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Abstract
Gerth generalised Cohen—Lenstra heuristics to the prime p = 2. He conjectured that
for any positive integer m, the limit

C1? it m

. 2.0-0=x. ¥y /5 Powm)
X—o00 > o<p<x, 1
squarefree

exists and proposed a value for the limit. Gerth’s conjecture was proved by Fouvry and
Kluners in 2007. In this paper, we generalize their result by obtaining lower bounds for
the average value of |Cli/ Cli|m, where L varies over an infinite family of quadratic
extensions of certain Galois number fields. As a special case of our theorem we obtain
lower bounds for the average value of |Cli / Cli|’” as we vary L in an infinite family
of quadratic extensions of certain Galois number fields of class number 1 containing

Q@).
Keywords Class groups - Quadratic extensions

Mathematics Subject Classification Primary: 11R29 - 11R11 - Secondary: 11R45

1 Introduction

In 1984, based on some numerical evidence, Cohen and Lenstra made striking con-
jectures on the structure of the odd part of the (narrow) class group, and on divisibility
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_####_ Page2o0f43 C.GK.Babu et al.

properties for class numbers of quadratic fields. For instance, their predictions imply
that, for any positive integer n, quadratic fields with class number divisible by n, must
have positive density among the family of all quadratic fields. Among other things,
Cohen-Lenstra’s conjecture asserts that the probability that the class number of a real
quadratic field is divisible by an odd prime p is

1=TTa—1pm.
n=2

Akey idea of Cohen—Lenstra is to associate as a weight to the class group, the reciprocal
of the order of its automorphism group. In 1987, F. Gerth modified the Cohen—Lenstra
heuristics to the prime p = 2 by considering the square of the class group. Twenty years
later, E. Fouvry and J. Kluners ([3], [4]) confirmed these predictions on the 4-ranks
of class groups Clk of quadratic fields K. Here, 4-rank refers to the F,-dimension
of Cl% / CI‘I‘(. If f is a sufficiently nice, real-valued, positive function on the set of
discriminants, onc can define its average value in a natural manner. When f is the
characteristic function of a set of discriminants satisfying some specific property, this
average value - if it exists - is said to be the density of this set of discriminants. If
f(D) is of the form

ﬁ <2dimIF2 (Cl&ﬁ)/ Cl&(ﬁ)) _ 2i>

i=0

for some positive integer r, Fouvry-Kluners obtain the densities both for positive as
well as negative fundamental discriminants D, thereby confirming Gerth’s conjecture.
In this paper, we follow their technique to treat the more general case of quadratic
extensions of a class of number ficlds that have certain nice properties. We obtain
lower bounds for the densities. The lower bound involves the number of subspaces of
cardinality 2™ in ]F%m This idea of employing the geometry of F>-vector spaces was
a novel one introduced by Fouvry and Kluners. The idea was inspired by the work of
Heath-Brown in [7] and [8]. In order to use their ideas, we restrict our base field to a
family of class number one fields. Even though the outline of our proofs follows that
of Fouvry and Kluners, we need to carry out a number of technical generalizations
to adapt their proof. We use generalized versions of the Hilbert and Jacobi symbols,
and of the Siegel-Walfisz thcorem and other analytic estimates to complete our proof.
Throughout this article, K will be a number field such that:

(1) the extension K/Q is Galois,
(2) the ring of integers O is a principal ideal domain, and
(3) there exists a unit & € Oy such that the order of &£ mod p?is 2 forall p | 20k.

Examples of quadratic fields satisfying the above conditions are Q(i) and Q(v/3) to
name a few. Further, we show in Sect. 7 that certain Galois number fields with class
number 1, containing Qi) will also satisfy the above three conditions. We refer the
reader to Sect. 7 for several explicit examples. For a number field K, we shall use ng,
rk and 91 to denote, respectively, its degree, rank of the unit group, and the norm map
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to Q. Further, for a field extension L of K, Cly, will denote the class group of L and
rk4(Cy,) will be used to denote the 4-rank of L, viz.

dime, (CIE/CI{ ).

Our aim is to obtain, for a family F of quadratic extensions of K and any positive
integer m, a non-trivial lower bound for

2m‘rk4 (Clp)
lim inf Liern

X—00 dLerx |

where F(X) is used to denote the set of number of fields in F for which the absolute
norm of relative discriminant of L./K is at most X.

We became aware of some results due to Alexander Smith (“The Distribution of
£%°-Selmer groups in Degree ¢ Twist Families I” - arxiv:2207.05674v2 [math.NT] 8
Feb 2023, and “The Distribution of £°°-Selmer groups in Degree £ Twist Families 11"
- arxiv:2207.05143v2 [math.NT] 8 Feb 2023). Smith’s methods are very general, and
address also Selmer groups associated to elliptic curves. We have not succeeded so far
in deducing our results from those of Smith. In [17], he considers in Theorem 1.12,
number fields F* which do not contain the 2¢-th roots of unity. On page 17 of [18],
prior to Remark 3.12, he also makes the comment: “In our estimation, it should be
challenging but possible to adjust the methods of this paper and [17] to compute the
distribution of class groups in the presence of extra roots of unity." We are able to
consider some families of fields containing i as well (see the last section). Our methods
are comparatively elementary, and considering that it is not obvious to us how they
may follow from Smith’s work, we feel that publishing them would be of interest to
others.

Choosing the family F of quadratic extensions of K

We state first a lemma due to Smith [19] to help us in selecting an appropriate family
of quadratic extensions of K.

Lemma1 (H. Smith [19]) Let p be a prime above 27 in K. We use f to denote
the residue class degree of p over Q. Let L = K(J/a) for some o € Ok. Then
O = Ok[/«] if and only if a Ok is square free and

o £amodp® forallp|20k.

Let M be the compositum of K40, and K((Ol*()l/ 2) and let f be the conductor of
M/K. Here K40 (resp. Ky) is the ray class field of K with respect to the modulus
40K (resp. f). We will now define a family of quadratic extensions of such a field K.

Definition 2 Let ¢; be a generator of the subgroup of the roots of unity in K and let
S = {e1, ..., &} be a set of fundamental units generating Og modulo its torsion part.
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_####_ Page4of43 C.GK.Babu et al.

We denote by C the product of the absolute norms of the conductors of the orders
Okl[+/€]in Ok(z) as we vary ¢ in the set S U {¢;}. Let

Pk = {p C Ok : (p,COK) = Ok and p splits in K;} and we set Pg(X) = ]_[ p.

PEPK,
N(p)<X

Definition 3 Let

W={aOg C Ok :p| Ok — p € Pk, a0k square free } and (1)
W(X) = {aOk C Ok : MaOk) < X, aOk | Pk(X)}. (2

For a generator o of Ok such that

o? £ o mod p? forallp | 20k, 3)

we set L, to be K(\/a).

It stands to question why an « satisfying (3) should exist for « Og € W. To see this,
we note that by condition 3 there exists a unit & € Og such that order of & mod p?is
2 for all p | 20k. If there exists a generator « for the ideal Ok € W satistying (3),
we are done. If not, the generator e« will satisty (3).

Finally we define

F = {Ly : Ok € W}.

For each such L, € F’, by Lemma 1 we now have Oy, = Ok [+/«]. Since {1, o} is
a relative integral basis of O, /Ok, we know that 0r,,;x = 4aOk. We now choose
aset F C F’ such that

e forany «Og € W, L, € F for exactly one generator «; of ¢ Ok.

Let us also set for convenience the following notation:
F(X):={LeF :NOr/k) <4X}.

We state the main theorem of our article now.

Theorem 4 For any positive integer m and X varying in R,

Y era 2 N @m,2)
lim inf > TR
Xpo0 2rerxn ! ik
Here N'(2m, 2) is used to denote the number of subspaces of F%m of 2™ elements.

Infinitude of the family F follows from Chebotarev’s density theorem. In Sect. 2, we
compute an asymptotic for the cardinality of the set 7 (X) as X — oc. In order to
prove our theorem, an important ingredient is a lower bound for 2"%©IL) for I, € F.
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This is computed in Sect. 3. In Sect. 4 we recall the definition of Ray class groups
and introduce an analogue of the Jacobi symbol which will play the main role in the
proof of Theorem 4. We also prove certain properties of this new symbol. Section 5
has been divided into two parts. Section 5.1 deals with the divisor function, some of
its variants and their average orders. In Sect. 5.2 we state some important character
sum results such as the Large Sieve inequality for number fields, Siegel-Walfisz for
number fields and prove a generalisation of a Lemma of Heilbronn. In Sect. 6 we
begin computing a lower bound for the average of 2" ™4(CIL) a5 I varies in JF, for any
positive integer m. This section is divided into several parts. Sections 6.1 and 6.2 are
devoted to rewriting the main sum and bounding the contribution of certain subsums,
culminating in Propostion 39. In Proposition 41 we state a result on the indices of this
new sum which are not “linked" (see Sect. 6 for definition). This will be used to rewrite
the main sum of Proposition 39 in Sect. 6.4. We complete the proof of Theorem 4 in
Sect. 6.4. Finally, we conclude with examples of fields K which satisfy conditions 1,
2 and 3 in Sect. 7.

2 Cardinality of F(X)

We begin by noting that
#F(X) = #{aOk : a0k € W(X)} = Z 1
N(eOk)<X,
Ok | P (X)

We recall here a version of the Tauberian theorem as seen in [15]. Let us define the
Dirichlet series

ba 1
f&) = Y e = I <1+<nps>’ R(s) > 1 4)
a#(0) pePK
ClCOK

where by = 1 if and only if a is squarefree and composed only of the primes in Pk.
If a, = ) 514y ba, We have

f(s) = ZZ—’Z (5)
n>0

Theorem 5 Let 0 < k < 1 be a real number. Suppose that we can write

h(s)

o=
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for some h(s) holomorphic in R(s) > 1 and non-zero there. Then

Za N d(k)x

= (log x)¥

where d(k) = h(1)/T(1 — k).

In M(s) > 1, since f does not vanish in this region, one may take logarithms on
either side of (4). Now applying the series expansion for logarithms, we get

1 (1)m+l
bgfG)= D, g5t 2 Damew = D

(».K;/K)=1 (p. K;/K)=1 m>2 (r.K;/K)=1,
(»p,COK)=0k (»,COK)=0k (p,COK)=0k

where

(— 1)m+1
6)= Y D - and

(0. K;/K)=1 m>2
(»,COK)=0k

(p, K;/K) is the Artin symbol of p with respect to the abeiian extensnion K /K. Note
that for N(s) = o,

OIEDIDS

p m>2

1
m‘ﬂp’"“ - Xp: N7 (M7 — 1)~ ° Z P° (p

where ng = [K : Q]. Therefore, 6 (s) is holomorphic on i (s) > 1/2. By orthogonality
of generalised Dirichlet characters modulo f we get

11 x(p)
2 Nps  |Hi(K)| 2 Z

(. K;/K)=1 (p.COK)=0K x mOdf
(p,COK)=0k

In 9i(s) > 1 we can interchange the sums to get

1 x()

2 - |Hf( N 2 R
(. K;/K)=1 x mod f (p,COk)=0k
(»,COK)=0k

x(P) x(p)
Z Z‘ﬂp* |Hf(K)| Z Z Np*

|Hf(K)| x mod f P x mod § p|COk

However this now gives us

1 1
> = >~ (log L(s, ) + 61,4 (s)) ©
o T THE)] ¢ "
p.Ks/K)=1 x mod §
(r.COK)=0k
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where 61, (s) is holomorphic on f(s) > 1/2 forall x modulo f (by the same argument
as seen above for f(s)). Since L(s, xo) extends to a meromorphic function on C with
only a simple pole at s = 1 we have

02(s)

LG X0 = (s

with 6, (s) entire. We have

1
02(s) = (s — DL(s. x0) = (s — DIk (s) ]_[ (1 - ‘JtpS)
plf

and the product

n(l_mlps)

pIf

is entire and non-zero in R(s) > 1/2. Now by the zero free region for ¢k (s) (see
lemma 8.1 and 8.2 of [11]), we have a simply connected region containing R(s) > 1
in which 6, (s) is non-zero. Therefore

log L(s, xo) = log + 03(s)

1
(s—=1

where 03(s) = log6a(s) which is holomorphic in R(s) > 1. For x # xo, L(s, x)
extends to an entire function (see corollary 8.6 on page 503 of [14]). Again by the zero
free regions for each L(s, x) (from the zero free region for Tk (s) and the factorisation
K (s) = I X mod f L(s, x*)) we have a simply connected region containing R(s) > 1
in which L(s, x) is non-zero. In this region it follows that log L (s, x) can be defined
and is holomorphic. Combining all these observations and substituting in (6) we get

1 1
> = log(s — 1) + 64(s)
S
(5K K0=1 Np | Hs (K)|
(p,COK)=0k

where 64 (s) is holomorphic on Ji(s) > 1. Taking exponentials, we get

h
f(s) = Ll

(s — 1) ™I

with h(s) = ef®)F0a(s) holomorphic in f(s) > 1 and non-zero there. We can now
apply the above Tauberian theorem to deduce that

de(1 —1/|H;(K)DX

#{OlOK : OtOK S W(X)} ~ 1 1
(logx) ™™
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_####_ Page 80of43 C.GK.Babu et al.

Therefore, we have

FX) ~ de(1 — 1/1H;K)DX

1
(IOg X)l [H; K|

3 Lower bound for 2"4(Cl)

Throughout this section we assume L € F.

Definition 6 We say that a class [a] in the group CIy, is strongly ambiguous if it
contains an ideal a such that a = o (a) for a generator o € Gal(L/K). We denote the
subgroup of all such classes in the class group by Amy, (L/K).

We now recall the class number formula for strongly ambiguous classes.
Theorem 7 (see [13]) The number of strongly ambiguous classes is given by

2fl,L+l‘2.L*1

#Amg; (L/K) = h(K) -
o (LR =100 o N k@)

where t1 1, is the number of prime ideals in Ok ramified in L and t2 1, is the number
of primes at infinity of K which ramify in L.

The subgroup of classes in Cly,, generated by the primes of K which ramify in L is
contained in the group of strongly ambiguous classes of the class group. On the other
hand consider a strongly ambiguous class represented by a fractional ideal a of L such
that a = o (a), then let a = p}' - --p;* with all the p; being distinct prime ideals of
OL. Since o (a) = a every prime p; = o (p;) for some 1 < j < kand s; = s; (by
unique factorisation of ideals in a Dedekind domain and distinctness of the o (p;)’s).
This implies that if p; lies above a prime of K that splits in L, I := p;p; = p;o (p;)
divides a and [ is principal. If p; = o (p;) it lies above a prime of K that is either inert
or ramified. If p; is above an inert prime, it is already principal since Ok is a PID.
Any other p; must lie above a ramified prime. This implies that Amg, (L/K) lies in
the subgroup generated by the classes of ramified primes of L/K.

Remark 8 We note that in our context #(K) = 1 and we set [Ok : Nk (Of)] = 2°L,

Definition 9 We will use ’53L to denote the set of ideals

{gp’ilqg’? ... ‘p’E"'L :B'; | 4aOy, prime, ¢; € {0, 1} foralli € {1, ... t L}

n,L

Further let By, denote the set of ideals
e,

(p! ;2...q3t,t1*L :Pi | @Oy prime, ¢; € {0, 1} foralli € {1,...1] 1}
LLL s

where t{’L is used to denote the primes of K, not lying above 2Z but ramifying in L.
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Remark 10 We have Amg, (L/K) = {[b] : b € %L}. Given a [b] € Amg, (L/K) there

is a bijection between
{b1 € By, : by principal } < {by € By, : by € [b]}.

The map from the left to right is obtained by sending b to bb; /gcd(b, by)
the inverse map is also given by sending b, to bbs/ged (b, by)?. Since

b-bbi/ged(b, b)®
gcd(b, bby /gcd(b, b1)2)2

2_Further,

these maps constitute bijections. We now conclude that each class [b] € ‘BL has

exactly k representatives in 81, where
k=#{b € By, : b principal }.
We now observe that

#By, = Z #{by € BL : by € [b]} = k - #Am,, (L/K)
[bleAm,; (L/K)

It follows from the ambiguous class number formula that
k=217 [0F : NLx(Of)] =2 t1-iL,
Further, we have
[Ok : Nk (O] < [Ok = (0?1 < 2%+
where 7k is the unit rank of Og. So e, < rg + 1.

Lemma 11 ForanyL € F,

rka(Cly) o L
— Qrg+2

for some non-zero fractional ideal a of Oy}|.

[{b € By, : [b] € Cly, [b] = [a’]

Proof By definition
kg (Cly) = dimg, (c1{ /c1‘{) .

Therefore
o€l — 2 /CIf | = |{B? € CI, : B* = [OL]}].

However

{B* € Cly, : B* =[Or]) 2 {[b] € ClL, : b € By, [b] = [a’]
for some non-zero fractional ideal a of Oy }.
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_####_ Page100f43 C.GK.Babu et al.

Therefore we have

tk4(ClL)
2 = 2rk+2

for some non-zero fractional ideal a of O}

[{b € By, : [b] € Cly, [b] = [a’]

[{b € By, : [b] € Cly, [b] = [o’]

v

2rK+2
for some non-zero fractional ideal a of Oy }|.

m}

We now define an analogue of the usual Hilbert symbol and some of its properties
with an aim to characterise the lower bound in Lemma 11.

Definition 12 For a, b € K*, we define
(alb) : K* x K* — {0, 1}

where

(alb) 1 if x2 = ay? 4 bz? has a non-zero solution in K3
a =
0 otherwise.
The next proposition shows the equivalence of three useful properties which will
be used to simplify the bound in Lemma 11.

Proposition 13 For any L = L, € F and b € B, we denote by bOx the ideal
N K (b). Then the following are equivalent:

(1) [b] = [az]for some non-zero fractional ideal a of OL.
(2) be is a norm of an element in L* for some & € Og.

(3) (albe) = 1.

Proof (1) < (2):
For the forward implication, suppose (y2) = a>b~!. Taking norms on both sides we
get
N/ (a?)

b2
where bOkg = N,k (b). Since Ok is a PID we have a y3 € K* such that (y3) =
N,k (a). By Lemma 13 on page 25 of [20], we have

Nk (20L) =b

NL/x (v20L) = NL/k(v2)Ok.

Therefore

2
NL/k (120L) = NL/k(72)Ok = b%OK = DNL/k(y3/b)OK.
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This gives us assertion (2).
Conversely, let be = N,k (y4) for some y4 € L*. We know that y4 must be of the
form ys/ye where y5 € O, and y5 € Ok. Rationalising denominators, we get

bey¢ = NL/K(5).

If a prime ideal p of Ok divides ysOy, that is, pOy, | ysOv, then p* | beyZOk.
Since hOx is square-free, p? | yg(’)K. Therefore by dividing on both sides by a
generator of the principal ideal p?, we may assume that pOy, 1 ysOy, for any prime
ideal p of Ok. However for every prime ideal p of Ok dividing ysOk we must have
p2 | MLk (ysOL). Therefore there exists an ideal I C O, with I z | y50L and
(1) = p. Finally, there is a unique ideal of norm bOxk given by some b € BL..
Combining the above we get

y50L = ba? for some non-zero integral ideal a of Of,.

2) <= 3):

For the forward implication, if b¢ is a norm in K of an element of L, then there exist
x,y € K such that x? — ay? = be. Therefore («|be) = 1. Conversely, if («|bg) = 1,
there exists a non-trivial tuple (x, y, z) € K3 such that

ax? + b8y2 =22

Rewriting the same, we get

b8y2 =72 —ax’.

Since the ideal a0k is square-free, /o ¢ K. Therefore y is non-zero. Now dividing
by y* we get the lemma. O

We will now prove some properties of the aforementioned analogue of the Hilbert
symbol.

Lemma 14 [4] We have (a|b) = (bla) = (a| — ab) and (ac*|b) = (a|b).

Remark 15 For an arbitrary squarefree integral ideal I C Ok, we say that an element
y € Ok, with (yOk, I) = Ok, is a square modulo 7 if it is a quadratic residue
modulo every prime ideal p | 1.

Lemma 16 For any ideal xOg € W, we have

2 [(Ok/p)* : Ok mod pl, forallp | aOk.
Proof By definition of Ok, (p,K;/K) = 1 for all p | «Ok . Now consider the
field K(4/¢) for any element & of the set S U {¢ ;) considered in definition 2. Since

K(/e) C Kj, p splits in K; = K(/¢). To apply the Dedekind-Kummer theorem (see
page 47 of [14]) , we note that any prime p | Ok is co-prime to the conductor of
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Ok[+/€]in Ok, - Therefore X 2_¢ splits modulo p. Therefore for any element, & of
S U{¢;}, we have

2| [(Ok/p)* : (¢) mod p].

Applying the same to all the elements of S U {¢;} and using the fact that (Og/p)* is
cyclic, we have the lemma. O

Lemma 17 LetaOk € W. Suppose xOx = abOx and («|be) = 1 for some ¢ € O,
then a is a square modulo bOx and b is a square modulo aOKk.

Proof Since «Ok = abOx, we have abe| = o for some &1 € Oy . From Lemma 14,
we have
1 = (x|be) = (abe||be) = (—abe, - be|be) = (ae3|be)

where each ¢; € (’);‘(. Since we have (aez|be) = 1, we have

2 as3y2 for some non-zero tuple (x, y, z7) € K> @)

bez’ = x
Since the ideal aOk is square-free, ./aez ¢ K. Therefore z is non-zero. Further z is
coprime to every prime ideal dividing aOk. This is because if p | gcd(zOk, aOk)
then p? | ay?Ok. Therefore an odd power of p will divide ay>Ok (a Ok is square free)
and an even power of p will divide the other two terms (since gcd(aOk, bOk) = Ok).
Similarly v/be ¢ K and y is coprime to every prime ideal dividing 5Ox. Further, by
Lemma 16

2| [(Ok/p)* : Og mod p], forall p | «Ok

and in particular for all p | aOx, we get that O mod p is in the subgroup of quadratic
residues modulo p. Now reading (7) modulo aOk, we get that b is a square modulo
aOx. The argument for a modulo b is similar. O

Theorem 18 We have, for aOg € W with L =L, € F,

rka(Cly) o !
— rk+2

a is a square modulo bOx and b is a square modulo aOx}|.

{(aOk, bOK) : aOx, bOx square free ,aOg = abOK,

Proof

1
ks (Clr) me € B : [b] € Cli, [b] = [a?]

for some non-zero fractional ideal a of O}

A%

1
= Sni2 I{b € By, : Nk (b) = bOk, («|be) = 1 for some & € O}

Since there is a unique ideal b € 9By, of norm bOx for every bOx | « Ok, we get

1
2rka(ClL) > ml{bOK | Ok : (a|be) = 1 for some ¢ € Ok}
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1
> W'“C’OK’ bOx) : Ok = abOk, (a|be) = 1 for some ¢ € Ok}|.

Now by Lemma 17, we have the theorem.

4 Algebraic preliminaries

Definition 19 Let p be an any prime ideal in Ok, co-prime to 20k, and let a € Ok.
We define the quadratic residue symbol as

0 ifaep,
a
(—) =11 ifa ¢ pandaissquare mod p,

P —1 otherwise.

Let p be a prime ideal and 7 be an ideal in Ok such that p and I are co-prime. Since
Ok is a PID, we can express [ as I = iOk. For p | «Ok, we define @ (1) as:

=) ()

Since?2| [((’)K /m* : O (mod p)], the mapping is well-defined. Firstly, we will define
ray class group mod p of K and then we will prove that ®,, is a character on that group.
We generically denote places by the symbol v, but for non-archimedean places, we
may use ¢ to denote both a prime of K and the place corresponding to the absolute
value |.|q. We write v|oo to indicate that v is an archimedean place, which is real or
complex and Mx to be the set of all inequivalent places of K.

Definition 20 Let ¢ : Mk — Zso be a function with finite support such that for
v € Mk and v|oo we have g(v) < 1 with g(v) = O unless v is a real place. Then any
modulus b in K can be viewed as a formal product

b=bobo, withbp= [] a*? andbo =[] v¥".
qtoo,qlb v]oo

where bg corresponds to an Ok -ideal and b represents a subset of the real places of
K.

Now we define the following notation in Ok :

(1) Zx be the set of all non-zero fractional ideals in Ok.

2 II% C Tk is the subgroup of fractional ideals which is prime to b.

(3) K° C K* is the subgroup of elements & € K* for which («) € ZI[E'

4) Kb C K is the subgroup of elements « € K for which vq(a — 1) > vq(bo)
for all primes q|bg and «, > 0 for v|by (here v, € R is the image of « under
the real-embedding v).
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5) PI[% C II[% is the subgroup of principal fractional ideals (o) € II[% witha € K®1.

Definition 21 The ray class group of K for the modulus b is the quotient
Hy(K) := I} /PE.

Recall that for p | «Og € W, ®y(I) = (%) if I = iOk with ged(I, p) = Ok.
Since the power residue symbol is multiplicative, it immediately follows that ®, is
also multiplicative. If is = 1 mod p for some & € O then ®,, (1) = 1. Therefore, @,
is a character on Hy, (K). Such a character is called a generalized Dirichlet character

(a special instance of a Hecke character). Let a be a square-free ideal in Ok such that
a | xOk € W. Then we define the symbol (E) from Zg to {1} by

()=11()

This map is multiplicative since the power residue symbol is multiplicative. Let I =
i O be an ideal with ged(/, a) = Ok and ie = 1 mod a for some ¢ € Ok. Then, we

)n)-

pla

This makes (3) a character on H,(K). We now recall a theorem of Bauer from
Class field theory.

Theorem 22 (Bauer, Theorem 8.19 of [1]) Given two finite degree Galois extensions
Fi and F> of a number field K, if

Hp € Ok : p splits in F1}\{p C Ok : p splits in F2}| < oo,

then F» C Fy.

We now introduce some notation. Let sOk be a squarefree ideal of Ok. If s satisfies
(3), we set &g = 1. If s does not satisfy (3), we choose ¢ € Ok such the order of &
modulo each p2 for p | 20k is 2 (This is condition (3) on K) . We now set &, = «.
We now consider the field Ly, /K (Lys, := K(,/s&s)) and apply the above theorem
of Bauer to prove the following lemma.

Lemma 23 Consider the map
(&) 10K o (1),

given by

(3) =15 prancson =

P19
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The map, (ﬁ), defines a primitive character of HULW x (K.

Proof Clearly, (ﬁ) is multiplicative. The extension Ly, /K has degree 2 and relative

. . . oL,
discriminantdr,, /K = 4s Ok . We may think of (ﬁ ) as acharacteron IKL““ 'K defined

> SEs ses\”
(T) = ]_[ (T) , for all ged(d, or,,, k) = 1.

p"1o
By Lemma 1 and the Dedekind-Kummer theorem, we know that for any prime ideal
q satisfying the condition gcd(q, 4 sOk) = Ok,

S& . . 2 .
— | =1 ifand only if X~ — se; splits modulo ¢
q

if and only if (q, Ly, /K) = 1. )

Here (q, Ly, /K) denotes the Artin symbol of q with respect to the relative extension
L., /K. Hence for an ideal 0, gcd(9, 4sOk) = Ok,

SEg

<7) = 1 if and only if ]‘[ (d, Lye, /K)" = 1. o)

q"||9

By Conductor-discriminant formula, we have that the conductor of the extension
L., /K satisfies fLw /K = 0L, /K- This implies L., C KDLW K where KDLS isa
ray class field of modulus 9, ,k with respect to the number field K.

By Class field theory, HDLW xK) = Gal(KDLW ,x/K) via the map

es /K

[al > [] @ Koy, /K-
q"lla

Now suppose we have an ideal 3 = bOg with b = 1(d1,, /K), then [d] is trivial on
the left. Therefore nq’H 1(a, Kp Lyes /K /K)" = 1. By properties of the Artin Symbol,
we have

1= n(q’KaLﬁs/K/K)rlLsgs =[] @ L, /K)".
q"[19 q"119
By (9) this implies that (ﬁ) is a character on HDLW /K (K).
We will now prove the claim about the primitivity of (9—“) as a character on

Hyy, x (K). Suppose that (*%+) is a character on Hy(K) for some a | oL, /x. We
have Hy(K) = Gal(K,/K) via the map

(6] > [ Ka/K)".

q’b

Therefore, any prime q of Ok which splits in K4 /K would also satisfy [q] = 1 in
Hq(K). Since (*£) is a character on Hq(K), we would then have (%) = 1. By (8),
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this means that if ged(q, 4sOk) = Ok, q will also split in Ly, /K. Bauer’s theorem
(Theorem 22) would now imply that Ly, C Kg, implying that a = oy, /k. Therefore
(ﬂ) is a primitive character of HDLm /K (K). O

4.1 Analogue of quadratic reciprocity
Lemma 24 For an integral ideal a of O we have
Hq(K) = (Ok/a)" /Og mod a.
Here Og mod a = {u mod a : u € Og}. We shall denote this isomorphism by &,.
Proof Since Ok is a PID, we may define

& :Ig — (Ok/a)" /O mod a
b— b, where b = bOx.

Surjectivity of £ is obvious. We now consider injectivity. To do so, we note

kerf = {b € Z¢ : be = 1 mod a for some & € O}
= {b € Zg : bhas a generator which is 1 mod a}.

Hence, Zg /Pg = (Ok/a)* /O (a). O
Class field theory tells us that
Ig/Pg = Gal (K, /K)

via the Artin map, denoted V. From Lemma 24, we now have the following corollary.

Corollary 25 For an integral ideal a of Ok we have
Gal (Kq/K) = (Ok/a)* /O mod a

under the map &4 o \IJ;I.

Let p and q be two prime ideals in W. Since Ok is a PID, we have p = (p) and
q = (g) for elements p, g € Ok. Without loss of generality, by the definition of W,
we may assume
g =1 mod 40k.

Now,
q q . o2 .
<—> = (;) = 1 if and only if x“ — g splits modulo p.
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+v4

1 14
Let L’cI = K(,/q), where € OLQ- Then :1, Zﬁ} is an basis of L’CI over

K. Therefore 0y . However since g is prime and it ramifies in L, we have
L;/K q

A

ok = q. We claim that (’)L/q = Ok |:

Lemma26 Let K be any quadratic extension of K, and Ok be PID, then Ok, =
Ok [«a] for some o € K.

1+./q
2

and OL& is a free Og module with basis {1, 8}, we have a matrix M with entries in
Ok such that
vl ! 1 1
0o(®)) #(; %ﬁ :

1+
det(M)2disc{1, 0}Ok = disc { 1, 2‘/5 } Ok = =01k

By Lemma 26, we have OL:1 = Ok [#] for some ¢ € OL’q . Since € OL’q

Since

we have that det(M)? e Ok- But det(M) € Ok and therefore det(M) € Ok. This
implies that M is invertible and therefore we have our claim. Now we have the fol-
lowing diagram:

Kq

(@
Lg G
|2
K

Observe that, G = (O /q)* /Og mod q (under the map & o vy 1Y is cyclic. Hence

<g) =1 if and only if x? — ¢ splits in modulo p,
if and only if (2x — 1)? — g splits in modulo p (p does not lie above 27),

if and only if p splits in L’CI (by Dedekind-Kummer Theorem).
Now by the properties of the Artin Symbol, we have

p splits in Ly if and only if (p, Lg/K) =1
if and only if (p, K4/K) € G

Let us now consider &; o lIfq’ Y((p, K, /K)). By the definition of the Artin map Wq, we
have

Eq 0 Wy (p. Kq/K)) = &q(Ip)).
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If the ideal p = pOk, we have &q([p]) = p € (Ok/9)* /O mod q.

p splits in L/CI if and only if (p, K4/K) € Gy,
if and only if p is in the unique subgroup of index 2 in (Ok /q)* /O mod q.

The last observation follows from Corollary 25. We have a natural surjective homo-
morphism given by

7 (Ox/9)* = (Ok/9)* /O mod g
amod q — a.

For p € W, by Lemma 16 we know that Og mod q is contained in the subgroup of
quadratic residues in (Og/q)*. Let us denote the subgroup of quadratic residues in
(Ok/9)* by Rq. Then we observe that (Ry) has index 2 in (Ok/q)* /Og mod g.

This is because .
(Ok/q)* /O mod q
Ry /Ox mod q

= (Ok/0)" /Rq.

Therefore, the unique subgroup of index 2 in (Ok /q)* /O mod q is 7 (R). We may
now conclude that

p splits in L; if and only if p is in the unique subgroup of index 2 in (Ok/q)* /Ok mod q,
if and only if p is a quadratic residue modulo ¢,
if and only if x2 — p splits in modulo g,

if and only if <§) =1.

Therefore, for primes p and ¢ in WV, we have 4 — <E>
q
By multiplicativity, we obtain the following lemma.

9 B
Lemma 27 Let 3; and 9; be two ideals in W. Then (a—”> = (a—“>
7l v

5 Analytic preliminaries
5.1 Divisor function and some variants

We begin with an upper bound on the number of squarefree integral ideals with norm
atmost x and a prescribed number of prime divisors.

Lemma 28 There exists a constant By = Bo(K) such that for every X > 3 and £ > 1
we have

X (loglog X + By)t™!

#{a S Ok : M(a) < X, wk(a) = £, () = 1} <k log X Y

Here N denotes the norm map from K to Q.
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Proof We prove this by induction. For ¢ = 1, the required inequality holds by prime
ideal theorem. We now assume the result for £ and prove for £ + 1. Let

My(X) ={a S Ok : M(a) < X, ok (a) = £, p*(a) = 1}.
Let us consider an element a; = p1p2 - - - P41 € Mo+1(X) such that

Np1) < Np2) < -+ < Npey1)-

Since M(ar) < X, N(p;) < /X forall 1 <i < ¢.In other words N(p?) < X for all
1 <i < £. We also have

pip2- - Pi1Pivt - Perr € Me(X/N(p;)) forall 1 <i <£.

This implies that

(M1 (X) < Y My(X/N(p)).
N(p2)<X

Applying the induction hypothesis, we now have

X 1 (loglog X + By)‘~!

M < D S GGy =D

N(p<X

Therefore, we have

loglog X + B;)¢! 1
<<( glog 1) X Z

Y .
t+1 0 N(p) log(X /N(p))

N(pH<X

Since N(p) < \/Y, we have X /9(p) > «/Y, and hence by Theorem 1 of [5], we
obtain

(loglog X + B! X Z 1 X (loglog X + By)*

Me1 < Np - log X 17

! log X
¢ o8 N(p)<X

m}

Next we would like to obtain an upper bound for the average value of y“K(® for
any positive real y as 91(a) varies in an interval. To this end, we recall here a theorem
of Shiu which we will apply to bound certain sums in short intervals. Consider a class
E of arithmetic functions f which are non-negative, multiplicative and satisfy the
following two conditions:

(1) There exists a positive constant A such that

f(p" < A%, p primeand ¢ > 1.
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(2) For every B > 0 there exists a postiive constant A = A5 (1) such that
fn) < AP, n> 1.

We now state the theorem of Shiu [16].

Theorem 29 (Shiu) Let f € E, as X — oo,

Z fn) K Y exp Z@

X-Y<n<X 1OgX p<X p

uniformly in Y, provided that 2 < X exp(—+/log X) <Y < X.

We now make an observation which will be useful in the proof of the following

lemma. By the Chebotarev density theorem, we have

Yotk
|H;(K)[logx " \log2x )~

NK/Qp)=x,
(p.Kj/K)=1

Now by partial summation formula, we get

Z 1 _ Z Z‘JI(p):m,(p,Kf/K):l 1

NK/Q(P)=x, Np) m=<x "
(p.K;/K)=1
1 x ngz Z‘JI(p):m,(p,Kf/K):l 1
=0k + 5 dt
log x 2 t
x Zm K;/K)=1 | 1
:/ (p)sn(pz, 1/K) dt+OK< >
2 t log x

X t X t
= ————dt+0 / ———dt | +0
/2 | H; (K)| log # K < 2 12log’t ) : <

On computing the above integrals, we have

1 loglog x
Y =t ok,
Ny (B=, NP Hp(K)|

(p. K;/K)=1

We now proceed to apply the theorem of Shiu.
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3 Lemma30 Lety € R., then

_r___
153 Z wa(a) <K, Y(log X) I ®

X-Y<N(w)<X
aeW

34 holds uniformly for 2 < X exp(—+/logX) <Y < X.

Proof Let f(m) = 3 o(a)=m.acw y @& with the convention that the empty sum is
0. We claim that f is multiplicative. This can be seen as follows. Consider

“’K@_ 1@
ag N(a) H( m(p)é) Z :
aCOK
aeWV

For any positive integer n which is a norm of an ideal in V¥V we have that f(n) is the
coefficient of n° in np\n [1pp0x (1 + #w) . Similarly if m is also the norm of an
G'PK

ideal in W and (m, n) = 1 we have that f (mn) is the coefficient of (mn)® in

[0 (o) =TT TT (o) T TT (1)

plmn p|pOg plm p|pOk pln plpOk
pePk pePK pePk

The last equality follows from the fact that (m,n) = 1. This proves the claim. We
have

f(m) = Z ywl((a) < Z y"Kw(m) < }/an(m)TnK(m)-

N(a)=m,aeW N(a)=m

For a prime power m = p’, we have f(m) < y"an(. For all m and any 1 > 0, we
have
Flm) < y"sU gy (m) L 2ROV (2 (m))"E gy mP"

We now apply Shiu’s theorem (Theorem 29), to get

Z wa(a) | Z f(m) << eXp Z &

X-Y<Na<X X—-Y<m<X p<X p
aeW

;5 Note that

f(p) Y o@—p.acw ¥ v v
P e S - L we Ll T

=X p=X P N(p=X, N(p)<X
D (p) is prime pePk
pePk
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y loglog X
=——— + 0k
| Hy (k)|

where the last step follows from (10). This gives us the required lemma.

We conclude this subsection with the average order of the function which counts
the number of ordered factorisations of an integral ideal of K into exactly g integral
ideals. Let g > 1 be an integer. For any ideal a € Ok, 7K, ¢(a) denotes the number of
ways the ideal a can be written as an ordered product of g ideals. For a number field

K, we have the following lemma.

Lemma 31 For any positive integer g > 1, we have

Y @ =a ’“(l"g—x))+0K<x(logx)g 2),
N(a)<x

Proof We use the induction hypothesis to prove the claim. It is well-known that (see;

[12])

_1
> 1 =akx+ 06T,
NM(c)<x

where nk is the degree of K/Q. By using (11), we obtain

Y. maw= Y Y= |

M(a)<x N(a)<x cla DN(c)<x N(D)< 52~ iG]

1

X X =g
- 3 (gt ox((5w) 7))
st O N(e)

1

=QKX Z —~|—0K< Tk

1
1--L )
N(e)<x N(e)<x NM(e)” "K

Also, using (11) and partial summation formula it is easy to see that

1 1 L
Z —— = QK 1ng + Ok (1) and Z ﬁ <K X"K .

1<M(c)<x Ne) 1<M()<x N(c) 'K

Thus, we have
> k() = agxlogx + Ok (x).
N(a)<x

Now, we assume that the claim is true for 1k ;1. Therefore, we have

log x)82
> (@ =o' T+ Ox(x(log ).
N(c)<x ’
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Since Tk ¢(a) = )|, 7K g—1(c), We obtain

x(log x)81
Z K g(0) = “ﬁ% + Ok (x(log x)$72).
N(a)<x 8 :

5.2 Important analytic prerequisites

The aim of this subsection is to introduce a few character sum estimates which will be
used in the due course of the article. We begin by recalling the Large Sieve inequality
for number fields due to Wilson ([21]).

Lemma 32 ([21], Wilson) Let K be a number field and Ox its ring of integers. Let
{tatacok be a sequence of complex numbers. Let x be a character of Hq(K). Define

Su(x) = Z tax (a). Then
N(a)<M

N *
) %Z SHGOP < @+ M) Y Il
N(=Q0 9 x mod q N(a)<M

*
where the summation Z is over primitive characters and ¢ is the Euler-
Totient function defined on the integral ideals of K in the following manner

1
¢@=N@[] (1 - —)
oa L)

The following lemma is a generalisation of the Siegel-Walfisz theorem due to L. J.
Goldstein [6].

Lemma 33 [6] Let K be a normal algebraic number field of finite degree ng and
discriminant dg. Let x be a nontrivial generalised Dirichlet character on H;(K). Let
€ > 0, there exists a positive constant ¢ = c(€) not depending on K or x, such that

Y x(» < Dx(log® x) exp(—cnk (log x)'/?/ D),
N(p)=<x
(»,H=0k

where D = n%((|dK|‘ﬁ(f))ec_"K.

We conclude this section with a generalisation of a lemma of Heilbronn on Gen-
eralised Dirichlet characters of Ray class groups. A key ingredient in the proof is
following character sum estimate of Heilbronn.

Lemma 34 (Heilbronn, Lemma 2 of [9]) Let K be an algebraic number field of dis-
criminant dg and degree ng. Let x be a non-principal Hecke character defined on
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Hy (K), for an ideal b with 0(b) = b. Then for any real x > 1 and € > 0, we have

_1
S (@) = OG"® |di [b)® 7+,
N(a)<x

where the constant implied by the symbol O depends on ng and €.
We now prove our generalisation of Heilbronn’s result from [9].

Lemma35 Fori € {1,..., N} and integral ideals ¢ with M(¢c) < x, let a;, b, be
complex numbers satisfying |a;|, |bc| < 1. Further let g be any positive integer. We
also assume that we have N distinct Hecke characters {x j};\’:1 modulo ideals of norm

{I; j };vzl, respectively. Then, we have

N N N 1
1 1 _ 1 - o~ 2 4
S 3" aibexi() < N'Hxlogx + N' %! 2("x+'>(1ogx><z§ (bilbn)""“) E

i=1 N(c)<x i1=1ir=1
i1#in

Proof By Holder’s inequality, we have

N
le’i(Z

i=1

aibe i (c)

D bexi(o)

Zg) i
N(e)<x

1
2
( < bclbchz(Cl)X (CZ)) >
DN(c1), N(e2)=<x

%( Z S X f(ez)ZXz(el)Xz(ez)) :

MN(ex)<x8 i=1

i=1 M(c)<x

where

fe)y= Y beyeibe, forje(l,2).

€j=Cj1Clig
N(ejr)=x

We observe that | f(e;)| < K ¢ (¢;). By multiplicativity of 7k ¢, we have 7k 4(¢;) =

‘ ; 2! o
[Tpsjje; TR.g(0*). We note that (P < 5+ D &, ((Z,)i)!. Since
K26+1(P°) = (g;gz)i)!!, we have Tk ¢(¢j)> <, TK,2+1(¢;). Therefore, it follows

from Lemma 31 that
Y 1f©F <k x*(logx)*.

eCOk
M(e)<x8

By applying the Cauchy-Schwarz inequality twice, we get

N 1
-4 *
Y aibexi(0| < N ( Yoo fel Y If(ez)|2>
i=1 N(c)<x N(e)=<x8 N(e2)=<x8
@Springer
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N 2\ %
386 X( Z ZXi(el)Xi(QZ) )
MN(ep)<x8 ' i=1
N(er)<x8
=35 (428 4gyd
387 KN 2 (x*%(logx)*®)ss

1

. <ZZZZXil(el)Xil(QZ)Xi2(92)252(91)>4g(12)

ip ip €1 e

;0 If we split the inner sums in (12) into two, one over the diagonal terms (thatis i| = i)
o and otherwise, we get
2> %

N
D) aibexi(o)

i=1 9M(c)<x

< lei (ng(logx)“g)% (Z Z

i1 02

D i Kin(@)

MN(a)<x8

1
2>4g

1 1
392 < Nliﬂ(XZg(logx)élg)@

393 <Nx2g + Z Z Z Xiliiz(a)

i ) l'2. MN(a)<x$
i1#£i2

34 Using Lemma 34, we have

395

1 1
< le@xlogx + N'"Zx2 log x

N
D0 aibexi(o)

i=1 M(c)<x
N
(2] & wiwe)|)
i i2 N(a)<x8
i1#i2
1—-L 1—L 1
307 Ly N *xlogx+ N 2x2logx
~ ~ i_,_ﬂ é
DD @K ldxlbi, biy) K
i i
i1#is
1—-L -4 -1
309 Ly N %xlogx+ N 2x 20k*D(logx)
1
-~ o~ 2 \ &
400 <Z Z(bilbiz)nKH) .
1 i2
1702
401 O
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6 Computing the average value of 2™l for L ¢ F
Let a € Ok. For any ideal § Ok satisfying (8Ok, aOk) = Ok, we set

1 )
XaOK((S) = m 1_[ ((E) * 1>

plaOk

Therefore, by Theorem 18, for«Og € W and L = L, € F, we have

1
2rk4(C1L) > m Z XaOg (b)XbOK (a).

(aOk,bOk)
aOg=abOg

We shall use T'(¢Ok) to denote the sum Z XaOx (B) XpOk (@). Then

(aOk,bOK)
aOg=abOg
On) — 1 ! b ! a
T(@Ox) = Z 2wk (@Oxk) 1_[ 13 1_[ + E
ab(’)K:a(’)K p\a(’)K p\bOK

1 bOk aOk
“on X % (o) X (Gar):
K

abOx =00k cOk|aOk

Suppose aOk = 9991 and bOg = 0,93, also let dg = cOk and 33 = dOk, then we

have
1 AWEA WA AW
weoo 2 () (&) (5) ()

30010293=a Ok

T(aOk) =

Define @ : F% X IF% — o, by @1 (i, v) = (u; + v1)(u; + v2), where u = (uy, up)
and v = (v1, v2). Note that ®1(u, v) = 1 if and only if

(u, v) € {((1,0), (0,0)), ((0, ), (1, 1)), ((1, 1), (0, 0)), ((0,0), (1, D)}.

If we write dy = 0o, 01 = Jdo1, 02 = 919 and 93 = 911. Then it follows that

1 9z Dy (u,v)
reo0 = s X 1 (8_>

aOg=000801310011 it,v€F3
We interpret the elements 0, 1 € 5 as 0, 1 € N with the convention that 0% = 1. Now
we consider the m-th moment of 2*%4(CIK) where m € N

1

Tn(@OK) = oo
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@y (it (m),v(m))

aﬂz) @y (u(1),v(1)) 39("))
u ulm
<X () eom () )

“OK:HQ(M},H) i(1),0(1)eF3 \ o) ii(m),v(m)eF3 \"v(m)

. (m)
@OR=[1z(m) Fii(m)

1
Suppose that €Ok = [T5(1)er2 8%) = =[lagmer a;'(”ni) and we define

1
da(1),....aom) = ged (35(1), . 8&",,%)

and

mao = [] - T[] [T - IT ..o

i()eF3  a(—1)eF3 a(+1)eF;  i(m)cF3

. (£) () NG
We claim that m; ) = E)W). Recall that Ok = ]_IW)GF% E)W). The‘:refore, aﬁ(f)
is square-free. If p|81§2), then it divides «Ok and this implies that p|a§()l.), for some

.....

implies p|m (), thus 822)|m,;(4). Conversely, if p|m;(), then

1 ¢ " . ; ¢
p| ged (85&), ceeh 8;&,), ceey 8;"&%) for some indices u(i) € F% Vi#L= p|a;(;).

Moreover, mj ) is square-free. This proves our claim. Therefore we can write «Og
as

a0k = [] a;f(}z)z T I - T ow.aon-

ii(¢)eF3 a(heF5  a()eF3  i(m)eF;

Therefore, by replacing 8;2) by mj ) in (13), we get

[ 0 G
_ 3 11 aty,...imy \ == T EDPD)
2maK (@OK) —_— )

a, —
Ok =[] dn)....aam) i(1),....i(m)<F3 ()., 0Gm)
i)t MRS 5(1),...,50m) €F2

Tin(aOK) =

Therefore, we have

1 1
m(rk4(ClL))
Z 2 e = Z 2m(rK+2) Tm(OIOK) = 2m(rK+2) N.

LeF(X) aOgeW(X)
where
N = Z T, (0 OK). (14)
aOgeW(X)
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Now, we need to estimate N. Let u, v € IE‘%’” with u = (a(1),...,u(m)) and v =
(v(1), ..., v(m)). We define

Dy (it, 1) = Y P1((0), 0(0)). 5)

i=1
Therefore we have proved the following theorem.

Theorem 36 We have

9.\ Pm (@)
N = Z mwK(]_[ Ry da) l_[ ( ) ’

() eD(X,m) 2 0

where D(X, m) is the set of 4™ -tuples of squarefree and coprime ideals 0; such that

(1) the index u = (u(1),...,u(@m)) € F%m and
(2) ]_[ﬁeF%m 07 € W(X).

6.1 Eliminating indices corresponding to a large number of prime divisors

For any ideal a € Ok, 1k () denotes the number of ordered ways of writing a as a
product of m ideals. Let

1 9 \ o (@)
Zl - Z mox [Ty ggm 32) l_[ <_> .

(3ﬁ),;€ﬂ;%m€'D(X,m) 2 i, v
wx(]‘[ﬁdF%m 07)><Q

Here, the parameter ©2 will be chosen later. Since T 4m(a) = 22meK(a) for any
squarefree ideal a, we have

Zl < Z Z(Cl) 7K 4™ m(a) <« Z uz(a)meK(“).

2mwK (a)
N(a)<X MN(a)<X
wk (a)>Q wK (a)>8

By using Lemma 28 and Stirling’s formula, we write

X (loglog X + By)U~!
Zl <<szv Z MZ(a) <K szv 2 10g
v>Q

= Nimex log X (v—=1!
wk (a)=v
X (loglog X + By)Y 2" (loglog X + B1))Y X
217“) . .
<K ) log X ol DY (v/e)® log X

v=>Q

@ Springer

| Journal: 11139 Article No.: 1146 [_]TYPESET [_]DISK [_JLE [_JCP Disp.:2025/6/20 Pages: 43 Layout: Small-Ex




451

453

454

455

456

457

458

459

460

461

462

464

465

466

On Gerth’s heuristics for a family... Page 29 0f43  _####

By choosing €2 = e4" (loglog X + Bj), we see that the sum

(2" (loglog X + By))? 1
> /ey <Y 5w =00,

v>=Q

v>Q

for any m > 1 and hence we have

X
- 16
D, <K og X (16)

6.2 Dissection of the range of the variables 8 into sub-intervals

Let A = 1+log~2" X and A; = A’, for some positive integer r, for all it € IE‘%’”
For A = (A,;)ﬁeF%m, we define

T(X,m,A)=Y_ (l_[z—mwK“’ﬁ)) I (—“) _ ]

@) ~ u 7Ry

where the sum is over d; € D(X,m) such that A; < NG =< AAj,
wK(]_[ﬁeF%m 07) < Q forall u € IE‘%’” Here D(X, m) is defined as in Theorem

36. By using (16), we write

X
N = Z T, (@ OK) =ZT(X,m,A)—|—O(@>, (17)
aOgeW(X) A

where A is such that nﬁeF%m A; < X. We will now consider 4 families of tuples
(An); 2 and show that their contribution is negligible.

First family: The first family is defined by: (A7) such that [ ], cBm A > AY'X.
We have

Z IT(X,m, A)] < Z 12 (@)2meK (@)

A A" X <N(a)<X
l_[ﬁE]F%m Ag=ATX aeW
Using Lemma 30, Z 2 (@)2m k@ e X1 — AT (log X)2" L
A" X <M (a)<X
acWw
We note that A™#" = (1 + log=2" X)™#" = 1 — 4" log=2" X + 0,,(log~2""" X);
hence
X
>, IT(X,m, A)| <Kkm ——-
" log X
Macm YVEY NP ¢
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IA

Remark 37 Note that if ]_[Engm Aj
Hu'eIF%’” Az < X.

AT"X then N([Tpemndi) < AV

To introduce the other families, we define

X}' — (1Og X)max(ZO,10(nK+1))(2+4’"(1+2"‘))’ n(m) — 2—m,3 (18)
X* is the least A¢ such that A > exp(log'7(m) X), (19)

where § > 0 is sufficiently small.
Second family: This consists of (A;) such that [ ], F2m Aj < A" X and

at most 2™ — 1 of the Az in A = (AL;)QGF%m are greater than X*, (20)
Then
Y r&mals Y Yo @)K (B2 e @
A satisfies (20) 0=r=<2"—1y§)<(XH)" -
x Y w2k, (B2 ek @),
N)= 55
ézGW

By using Lemma 30, we bound the inner sum by

Y 2@ w2 @« N (B onr

F) X ] X
N(d2) < e Y 2)591(31)

Szew 52€W

r2—m 1

X _
<K,m—= (log X)"®T
Gy

Thus
oy
Z IT(X,m, A)| Kk mX Z (log X) A&
A satisfies (20) 0<r<2m_|
5% 2mwK(51)
> WA e
NG <r (XD !
r2—m ]
LK,mX Z (log X ) Hi®)!
O<r<2m—1
21"’[
1+ —)
(s
NEp)=(xH*"
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r2—"m -1
LK.mX Z (log X) 'Hi )

O<r=<2m—1

p
N(p)<(xH¥"~r

By using Mertens’s theorem for number fields (Theorem 1, [5]), we have

z—m

(log X) R 2

m

0 (s)

Y Tm A <k — ) aog x>
B og X P

A satisfies (20) (log X) [Hf (KT __ 1

om _1_’_1—2””
<K.mX log ) = 775y X.

Definition 38 The variables iz and v are said to be linked if ®,, (iz, v) + @, (v, ir) = 1.

Third family: This consists of (A;) such that
() [1; Az < A™¥"X.
(ii) Atleast 2" of the A; in A = (Az); cgn are greater than X i
(iii) There exists two linked indices i, v such that A;, A; > X T,
Without loss of generality, we assume ®,, (iz, v) = 1.
ITX,m A< Y [] 27mex®

(0a)w£0.a WU,V
Ay =N(p)<AAy

i
X ‘ Z Z a0, () wo,a)a(dg, (f’w)mﬂ,a)(a—_) ‘

A <N0a)<AAz Ag<N(0p)<AA;
HEW

' 5\ Pm(i.)
where a (., (9p)pzs.a) = 27K [T (;Tw)
7

Wi, W, D

1)

8; \ Om @D
o '

Analogously we have a(9d3, (33)w+5,2). We would now like to apply Lemma 35.

For this we note that <3—> is a primitive character modulo ;. Each character appearing

in (21) is primitive with a distinct conductor. Hence these characters are distinct. We

now apply Lemma 35, to obtain, for any integer g > 0

=1 -4 -1
IT(X,m, A)| < Azl AsAz(AF log Ag) + A, FA. "V logA;
v g v u g

Wil

()

N(a)<Aj;
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=1 l— 1t 1
<1 Au-,(A;)AL-,(Agg log Az) + AgA, KTV AZ0KHD logAL-,>

Wil

TN Tod T, T
<X((XT)% log X) + X (A, "8V ALK V) log X.

By choosing g = 5, we see that if A; < A% holds, then

—min( —1 1
IT(X,m, A)| < X(X") min ey ) log X.

We now tackle the case A% <« Aj. Using the Cauchy Schwarz inequality, we may
bound the sum inside the absolute value in (21) by

1
2)2

If 9; = sOk, then by definition of (I) for 0; € W(X), (3—1’) = (%) Here &g

< Aé ( > ‘ > a5, Pa)isia) (g—“)

i dp

is as defined before Lemma 23. By Lemma 23, (ﬁ) is a primitive character modulo
49;. Now, by Lemma 32, we obtain (when A% <K Ap)

11 1 =1 .
ITX.m A< [ As(AZAZ(A; + Ap)?) K XA7 < X(XD)7.

Wi,

By summing over all O ((log X)*"(1+2™)) possible A and using the definition of X
we get

X
Z IT(X,m, A)| < loa X
A satisfies (i), (i), (iii) o8

Fourth family: This consists of (A;) such that

@) [Tzerzn Ai < A X

(i) There exists two linked indices i, v such that 2 < A; < X' and A; > X*.
(ifi) ok ([T 92) < Q.

(iv) Two indices u, v with A;, A; > X T are always unlinked.

(v) Atleast 2™ of the A in A = (Aﬁ)ﬁEIF%m are greater than X i

By assumption (ii), there exists an index v which is linked to iz. We observe that there
may be more than one index linked to i. Recall that

. 87 Dy (i,0)
T(X.m, A=) (Hz—mwmg)) I1 (a_u> _

@) ~ u 0
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Let I; C F5™ be the set of all indices linked with i and let I, C F3™ be the set of all
indices unlinked with . We now divide the above sum into three sums as follows

_\ @ (@2.D)
TX.m A= > Y Z( I1 2_mwK(3ﬁ1))_l_[ <5;va> o
2

Od)awen Gaopijen, % aeF3™

siv  Taking absolute values, we get

—mwK (37, ) (‘)EZ ®,, (it2,0)
2(e), ()]

Ui iy eFm it vEF3"

520 TX,m, A< Y Y

Op)wer, (Op))wjeh

w
N

Any term given by < ) with u2, v # u, can be pulled out of the sum over d; and
s2 can be bounded by 1. If we have a term given by (a,u,> with v € I, then the term
523 (‘: ) will also appear in the product and by Lemma 27, they can be multiplied to give

s 1. Finally we are left with terms given by < ) or < ) with v € I1. By Lemma 27

s»s  and multiplicativity of these characters, we get

TXm A< Y ‘Z“z,,ﬂ(ff)< . au“)‘

On)wer, Bawjer, | Majen

w
N
o

1
Y X Y | &)
() wer, D))o, er, 0SL<Q y Mayen, 9
o (9)=t

s Writing d; = pj - - - pg in ascending order of absolute norm, the inner sum is bounded
529 by

‘ Z u(]‘[aw)( — )‘
wlelz(wl

a)(d ) L
P1 Pe—1"' Pe Wi wiel w1

sz where (l_[—<’> is non-trivial generalised Dirichlet character. We note here that
wyelp “wi

1/1z AAj

533 <M _ 23
(he) = Np1---pe—1) ()
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Ifpy | ]_[L—U# dy then the corresponding term in (22) is zero and number of such py is
at most 2 by condition (iii) above. Therefore, we have

2y . .. oy =—P >
Z w1 Pel_[ )<Hw16123u?1

Ay Wil
m(W)S m(pl“"*fl;’/fl)

=1 per [ ] 00) > (%) + 0(Q).
w1

Wi Y. R i€l
RUCHES Torswymey
ged(pe, [ T2z 9)=Ox

However

2py.pe1 [] o0 =)
W1 v [ 0a) > (1_[ P

Dt i il
Wl m(pf)Sm(pIAiAu wieh
ged(pe.[ 12z 90)=0Ox

=11 Pt l_[ ) Z <]‘[p—l]8> +0(RQ).
w1

0 il AAj wiel
il NP 51057 gy

ged(pe.[1g, cr, 9))=Ok

Applying Lemma 33, we obtain for any 1 > 0,

> (p—l> <
AA; r[li)]é]z du_)l
m(pf)si‘ﬂ(plwp(,l)
ng(pbnd/lelz i)ujl)ZOK
A1
AA; AA;
N l_[ O, L log2 “
Npy ... pe-1) N(p1 ... pe-1)

w1l

1
2
AA;
(log I(p; ~~p61)> )

exp | —2ck,
p ( € QU P 30,))P!
L m(ni)lelz awl)ﬂl(l+23) . AA;
: B-2 AA,; .
log™™ 71 pe D NP1 ...pe—1)

Choosing 1 = m, we obtain

pe m(anEIZ E)"’)1)1/2 AA;
Z (H 3@1) <z logh—2 —AAi " Rprpe)”

AAg w1l N(py.pr—1)
m(pl)fcn(pl ..... Pe—1)

ng(Pesnﬁ;le/z 9, )=0k
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By (23) we have

> ( » ) < N layen da)'?  AAz
AAj 1_[11_)1612 a11)1 10g372 Allz/i m(pl RO © pffl)
NPT D
ng(pevnﬂ;lelz 817)1)ZOK

By the definition of the fourth family, we have A; > X* > exp(log"™ X). This
implies that

lo gB 2A, § log(B—Z)n(m) X o ) (B=2)1)(m) X
e ftu e 2
(B2 >K.B (loglog X)B—2 P 108

Therefore, we have

R7)
Z ( P ) <p AA; m(l_[zblelz aun) / log_(B*ZZ)n(m) X
) [Ta e, 90 Npy...p1—1)
m(p[)—‘ﬂ(m ----- L;J —1
eed(®e.[T5, c1 9=k
Also, we see that
1 2(py...po
> > BB Pl o0 Adp < log X
2mt Np1---pe-1)
=Q N(p1--pe-1)<AAz

and Y < M(a,)2 < (X1)3. Further

DD MZ Y l«xahE

("w)well ‘)wl)wlglz 0=<t=Q Pe-1
Np1--pe-1)<AAG

1-1/¢
Hence, for B > 1, we have

ITX.m, M) <5 [] As- [T &H3 - (og x)~B1+1 a7) + @x(XF)~8

wely wi€lp

m - loglog X X
<<BX<(10g X)fBT)(mH»l . (}('i')z‘T + 0oglog ) B - X

(XH17e

Combining the estimates for all the four families and recalling n(m) = 27" 8 we get:

Proposition 39 For every m > 1 and B > 0 sufficiently small, we have

Y Tw@ox) =Y T(X.m, A)+ 0

o 2
og )™ ) (24)
aOKEW(X) A (log X) ™I
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where the sum is over tuples (Ag); eF2m satisfying the following conditions:

(i) [zemn A < A" X
(ii) At least 2™ indices satisfy A; > X3,
(iii) Two indices u, v with Az, Ay > Xt are always unlinked,
(iv) Iftwo indices u, v with Ay < Aj; are linked then either Ay = 1 or2 < Aj < xt
and A; < X%,

6.3 Geometry of unlinked indices

Lemma 40 (Lemma 18, [4]) Let m > 1 be an integer and let U C F%m be a set of
unlinked indices. Then #U{ < 2™ and for any u € F%m, u+U is also a set of unlinked
indices. If #d = 2™ then U is a vector subspace of dimension m in IF%’” or a coset of
such a subspace.

Proposition 41 For everym > 1 and B > 0, we have

X om _am
> Tw@ow) =) T(X.m A)+ 0 | —————(logX) 1= |
aOgeW(X) A (log X) Mi®!

where the (x) in the sum is used to indicate that A varies over

(i) Tepen Aa < A X,
(ii) U = {ii : Az > X*} is a maximal set of unlinked indices,
(iii) Az = 1foru ¢ U.

Proof For B >, g 1 we have X* > (log"™ X)B > XT. Therefore, by part (iii) of
Proposition 39, U is a set of unlinked indices. Further by part (ii) of Proposition 39, U/
contains at least 2" elements. By Lemma 40, I/ must be a maximal set of unlinked
indices. For v ¢ U there exists u € U such that u and v are linked. Since A; > Ay,
by part (iv) of Proposition 39 either A; = lor2 < A; < X" and A; < A; < X%
But A; > X¥so A; = 1. O

Definition 42 Let U C F%m denote an unlinked set of 2" indices. We say A =
(Ap); cF2m is admissible for I/ if it satisfies:

@ [Tzemr Az < A™'X,
() U ={u: Az > X¥),
(ili) Az = 1forii ¢ U.

Note: If A; = 1 then 9; = Ok.
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6.4 The final estimate

We begin by recalling the sum we want to estimate. Recall that

Pk (it,0)
Z T (xOk) = Z zmwl((]_[d ) 1_[ < ) .

aOkeW(X) () i,
[19:eWX)

By Proposition 41, we have

Dk (4,v)
Z T (@¢OK) = Z 2mm]((l_[ 07) l_[ < )

aOKeW(X) (92) i,
[1dzeW(X)
* X 2™ n(m)
:Z T(X,m, A)+ 0 | —————(logX)
A (logX) ™Ml

where the (%) in the sum is used to indicate that A varies over
. _y4m
(i) ]_[ﬁeF%m A < AT X,
(i) U = {ir : Az > X*} is a maximal set of unlinked indices,
(i) A =1foru ¢ U.
By the definition of admissible A (Definition 42), we get

Y Tu@Ok) =Y T(X,m, A)

_ 2—m
Hil |

aOgeW(X) A

X

vol—2  ogx)” "™ T
1—

(log X) 'l
- Y e
U A admissible for U
+ 0 +logzm "= '”f(K)‘X

1og17'Hf(K>‘ X

Here

1 9 Pk (u,v)
T(X.m A= ) ml—wﬂ ‘

(), 0k ([T 92)<Q i,v
A< (d7)<AA;
[TazeW(X)

Let us look at

Y Y a3y ©

A (9z).0k([]02)>Q u,v A (3z).0k(]3:)>Q
A <N(0g)<AA; A <I(dg)<AA;
1_[ i eW(X) n&),;GW(X)
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Since

) 3 m«Z 3 2@ ()

A (37).0k(]02)>Q 1=Q N(a)<X
Ag<Ngz)<AA; wK (a)=¢
[TozeW(X)

X
&« ——. (cf. subsection 6.1)
log X

For a set of maximally unlinked indices ¢/ and an A admissible for I/, we set

Py Sk (i,v)
T'(X,m, A) = > u2<]_[ ag> 2-mex (Macue ) T (8_> .

O)iecu el i, veld
A <T(da)<AA;
nﬁeu daeW(X)

By Lemma 27 we get

T'(X,m, A) = Z Mz(l_[ 92)2 K [acyy 9
(9 )icu ueld
A <MN(07)<AA;

[Micw daeWX)

Therefore we have

Z T, (@OK) = Z Z T'(X, m, A)

aOgeW(X) U A admissible for U

m _o™m
+0 Ll(logX)z 1 g

logl_'Hf<K>‘ X

‘We now consider the sum

Z Z MZ(H 31;)2_’"‘“1((“»2514 i)

A admissible for U Op)iieu N
A <) <AA;
[zey €W X)

Since A is admissible for I/, at least 2" entries of the tuple A are 1 and these are all the
entrieswith A; < X ¥, We first note that any a € W(A’M X), with norm greater than
X*, appears as a product of the form [];;, 3, for some A admissible for /. Each
such a appears as many times as the number of factorisations of a into 2 ideals each
of norm greater than X*. Therefore we have

Yo TXmA= o (] a2 e Tliacio

A admissible for U4 A admissible for U O)icu ueld
Ag<N(%)<AA;
[ToaeW(X)
@ Springer
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= Y @ (@2 K@
aeW(X)

+ O( Z Mz(u)nyzm (6)27’"“)1((0))

A" X <N(a)<X

aceW(X)
0( > 27mek® g o (b) (b)
bew(X¥)
Y 2RO - l)wK<‘>u2(c>),
cEW(5G)

where the last term corresponds to the summands which have at least one factor that is
less than X*. By using Lemma 30, the inner sum of the second error term is bounded
by

I = Z 2—mwK(C) (2m _ l)wK(c)/Lz(C) — Z TK’2(C)_m+lOg2(2m_l)

ceW(55) cEWlsit)
- m+logy (2" —1) _ _o—m
(logX) Mi® < (log X) ‘Hmol

sﬁ(b) 91(b)

Then by using Mertens’s theorem for number fields (Theorem 1, [5]), we can bound
the second O term as

-1 ©?(b) L2 1
X (log X) 5@ X (Iog X) H®)] 14—
(log X) > Ty <XllogX) I < o)
1<M(b)<Xx# N(p)<Xx#
X 2" (m)—
L (log X) 'Hf<K)|
log 'Mi®! x

By using similar arguments as in the estimate of the first family, we see that the first
error term is bounded by X /log X. Therefore, we have

Yo T'Xom A= Y pra)g on (@)27"K®
A admissible for U aeW(X)
2" (m)

X ]
+0 [ ———ogx) I3
log Mi®! x

As noted before for a squarefree ideal a, g om (a) = 2m@K(®) This Jets us conclude
that

1 1
Am(rk+2) Z Tn(@Ok) = m(rK+2) Z Z

aOgeW(X) U aeW(X)
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X om _2"m
+0 1—1(10gX) 10~ g
log Mol x
N@m,2)
= 2m(rK+1) Z 1
aeW(X)
X 2" (m) — et
TO | — 7 (ogX) 10~ )
log M x

7 Examples

In this section, we give examples of number fields which satisfy all the above condi-
tions.

7.1 Example 1

K =QQ@).

It is obvious that QQ(7) satisfies conditions 1 and 2. We know that 2Z ramifies in K. For
the unique prime p | 20k, [(Ok /p>)*| = N(p)(M(p) — 1) = 2. Since 1 # i mod p?,
condition 3 is also satisfied.

7.2 Example 2
K = Q(/3).
Again, K is known to satisfy conditions 1 and 2. In this case Oy = {41} x («/3 —2).

Again we note that 27Z ramifies in K. For the unique prime p | 20k, |(Ok/p>)*| =
NH)N(p) — 1) = 2. In Ok, we have

p? =20k = (1 —v3)Ok - (1 + V3)Ok = (1 — V/3)? Ok,

this shows that 2 — /3 % 1 mod p?. Hence we have condition 3.

7.3 Other quadratic examples

Some other examples of fields for which the above argument can be applied are Q(v/d)
for
de{7,11,19,23,27,31,43,47,59, 63, 67,71, 75, 83, 99}.

These were generated using SAGE and many more can be generated in this fashion.
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Table 1 Examples of Galois cubic fields with class number 1 in which 27 splits

Serial Defining polynomial of the field Serial Defining polynomial of the field
1 B +x2—10x -8 8 x3 — x2 — 94x 4304

2 3 4x2—14x -8 9 x3 —x2 - 102x — 216

3 x3 —109x — 436 10 x3 —433x — 3464

4 X3+ x2—42x — 80 11 x3 — x2 — 146x + 504

5 X3+ x2—52x + 64 12 x3 —x%2 —152x +220

6 x3 —x2 —74x — 256 13 x3 —x% —166x — 536

7 x3—x2—76x —212 14 x3 —x2 —200x — 512

7.4 Example 3 (higher degree)

Let K be a Galois number field with class number 1. If 27Z splits in K, then for any
prime p | 20k, we know that 2 ¢ p>. This is because the valuation of 20k with
respect to p is 1. Therefore 1 # —1 mod p>. This gives us condition 3 above. Here
are some examples of such cubic fields.

7.5 Example 4 (Galois Field K with class number 1, containing Q(i), in which
ramification index of 27Z is 2)

In view of Example 7.1, we assume that K # Q(i). We have already assumed that the
field K satisfies conditions 1 and 2. We know that 2Z ramifies in K. Let the ramification
index be 2ej. This implies that

ZOK = 1_[ pZel .

p|20k
pCOK prime

If e; = 1, then we have

a+ioxk=[] »

p|20k
pCOK prime

This implies that 1 # —i mod p? forallp | 20k . This implies thatif e; = 1, condition
3 is also satisfied.
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Table 2 Examples of Galois number fields with class number 1, containing Q (i) in which ramification
index of 27Z is 2

Serial Defining polynomial Serial Defining polynomial of the field
of the field
—x2+1 X0+ 6xt +9x2 41

x12 _ x6 +1
8 —9x0 +19x% +5x2 + 4
O +5xt+ex2+1 x10 4 9x8 4 28x0 +35x% + 15x2 + 1

x20 — x18 4 416 10 7249
xl4 +x12 _xl() +
K8 —x0pxt—x241

x*+3x2 41
W —x0xt—x2 41
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